Search Search

SURF: Announcements of Opportunity

Below are Announcements of Opportunity posted by Caltech faculty and JPL technical staff for the SURF program. Additional AOs for the Amgen Scholars program can be found here.

Specific GROWTH projects being offerred for summer 2017 can be found here.

Students pursuing opportunities at JPL must be U.S. citizens or U.S. permanent residents.

Each AO indicates whether or not it is open to non-Caltech students. If an AO is NOT open to non-Caltech students, please DO NOT contact the mentor.

Announcements of Opportunity are posted as they are received. Please check back regularly for new AO submissions! Remember: This is just one way that you can go about identifying a suitable project and/or mentor.

Announcements for external summer programs are listed here.

  << Prev    Record 15 of 114    Next >>           Back To List

Project:  Structural, Dielectric, and Ferroelectric Characterization of Designer Tunable Dielectric Created by Molecular-Beam Epitaxy
Disciplines:  Applied Physics, E&AS
Mentor:  Darrell Schlom, Herbert Fisk Johnson Prof. of Industrial Chemistry, (CCE),, Phone: 607-255-6504
Mentor URL:  (opens in new window)
Background:  NOTE: This project is being offered by a Caltech alumnus and will be conducted in Ithaca, NY. Because of funding restrictions, applicants for this project must be U.S. citizens or U.S. permanent residents.

We are entering a new era of materials research, one in which materials with properties superior to those of any known are being designed with the aid of the computer. Our theory collaborators are continually coming up with new arrangements of atoms, customized at the atomic-layer level, that they believe will exhibit even better properties. A major challenge, however, is to prepare these materials to realize these properties. This is our research goal and we do it using a thin film growth technique called molecular-beam epitaxy (MBE). My group, which has expertise in synthesis, works as a team together with other groups with expertise in theory and characterization to target and unleash the record-breaking properties of oxide materials. Using this “materials-by-design” approach, our team has achieved some major successes including a new tunable dielectric that has the highest performance of any tunable dielectric at room temperature, making it desirable for 5th generation cell phones and other electronics that operate at tens of gigahertz frequencies (C.H. Lee et al. “Exploiting Dimensionality and Defect Mitigation to Create Tunable Microwave Dielectrics,” Nature 502 (2013) 532–536.). Having understood the inner workings of this new tunable dielectric, we are eager to create an even better manifestation of it with superior performance.
Description:  As a SURF student, you will be an integral member of our research team working to make a dielectric with low dielectric loss whose dielectric constant can be tuned significantly by applying an electric field at room temperature. At first you will gain familiarity with the characterization techniques you will be using to assess the structural, dielectric, and ferroelectric properties of the new materials that are being created by your co-mentor using MBE. Once you have learned the operational details of x-ray diffraction, capacitance vs. temperature, and polarization vs. electric field measurements, you will measure the films being grown by your co-mentor to provide important feedback allowing optimized conditions to be found for the growth of a new oxide material believed to be a superior tunable dielectric. You will brainstorm together with the entire team—involving theory, synthesis, and characterization—to gain understanding of the connection between the structure and properties of the materials made and devise a route to create a superior tunable dielectric.
References:  C.H. Lee, N.D. Orloff, T. Birol, Y. Zhu, V. Goian, E. Rocas, R. Haislmaier, E. Vlahos, J.A. Mundy, L.F. Kourkoutis, Y. Nie, M.D. Biegalski, J. Zhang, M. Bernhagen, N.A. Benedek, Y. Kim, J.D. Brock, R. Uecker, X.X. Xi, V. Gopalan, D. Nuzhnyy, S. Kamba, D.A. Muller, I. Takeuchi, J.C. Booth, C.J. Fennie, and D.G. Schlom, “Exploiting Dimensionality and Defect Mitigation to Create Tunable Microwave Dielectrics,” Nature 502 (2013) 532–536.
Student Requirements:  Familiarity with electricity and magnetism (Ph 1b,c or equivalent) and fundamentals of x-ray diffraction (MS 90 or APh 77, or equivalent)
Programs:  This AO can be done under the following programs:

  Program    Available To
       SURF    Caltech students only 

Click on a program name for program info and application requirements.

  << Prev    Record 15 of 114    Next >>           Back To List